Big Data: как применять и анализировать большие данные?
Одно из самых популярных направлений в IT - применение больших данных. Big Data - это масштабные, чаще всего неупорядоченные массивы информации, и технологии работы с ними. Такая информация может храниться в базах данных, в сетях социальных медиа, в системах GPS, датчиках и т.д.
В использовании Big Data есть преимущества для бизнеса, поскольку это открывает новые возможности и помогает компаниям развиваться. Онлайн-магазины, например, используют анализ больших данных для создания персонифицированных сервисов и продуктов, ориентированных на поведение клиентов.
Технологии анализа больших данных, такие как системы машинного обучения, помогают исследователям и аналитикам находить скрытые закономерности в массивах информации. К примеру, в области медицины это может привести к развитию новых лекарств и методов лечения.
Использование больших данных - это не просто модный тренд, это реальный инструмент, который помогает организациям и индивидуальным предпринимателям анализировать рынки, предлагать персонализированный контент и разрабатывать более эффективные продукты и сервисы для потенциальных клиентов.
Термин Big Data появился в 2008 году, когда журнал Nature выпустил специальный выпуск, посвященный влиянию огромных объемов информации на науку. С тех пор стало понятно, что использование аналитики больших данных актуально для всех сфер.
Расширение информационных технологий и увеличение возможностей в области вычислительной техники привели к экспоненциальному росту информации. Традиционные методы обработки и инструменты перестали справляться с поразительным объемом информации. Информация прибывает из разных источников, таких как интернет (социальные сети, сайты, интернет-магазины, форумы, СМИ), мобильных устройств, измерительных приборов, метеостанций, аудио- и видеорегистраторов, корпоративных систем и прочее. Каждый день объемы данных продолжают увеличиваться. Для обработки, анализа и хранения таких данных необходимы специальные программные инструменты и алгоритмы, которые входят в понятие Big Data.
Методы анализа и хранение данных
В мире современных технологий большие данные превратились в неизбежный элемент, который требует специального подхода. Огромные массивы разнородной информации не могут быть просто сохранены, оставив их лежать мертвым грузом и не используя. Работа с Big Data строится на нескольких этапах. В первую очередь данные должны быть собраны из разных источников. Затем следует процесс обеспечения их хранения, обработки и защиты от потери данных. В настоящее время облачные решения приобретают все большую важность в связи с возникающими особыми требованиями в хранении и обработке данных.
Большие данные непрерывно накапливаются, и наращивание собственной IT-инфраструктуры при всех возможных масштабируемых возможностях не является оптимальным решением. Нагрузки также не всегда предсказуемы, и физические серверы на пиковые моменты могут выйти из строя. Перестраховка же неоправданно увеличивает затраты. Перенос инфраструктуры в облако позволяет отказаться от дорогостоящего оборудования для хранения данных, а также от затрат на его поддержание и обеспечение безопасности. Облачные хранилища позволяют быстро масштабировать и резервировать вычислительные ресурсы и способны вместить большие объемы информации, при этом обеспечивая надежность, отказоустойчивость и гибкую настройку.
Один из основных и заключительных этапов работы с большими данными - это их анализ. Именно благодаря этому этапу Big Data начинает приносить реальную практическую пользу. Анализ позволяет отфильтровать все ненужное и выделить самую важную информацию, которая может быть полезна для бизнеса.
Методы анализа больших данных очень разнообразны, и их описание не входит в рамки одной статьи. Однако, мы можем рассказать об основных методах.
Переработка информации перед анализом
Процесс приведения неоднородных данных к унифицированному виду, заполнения пропущенных значений и удаления избыточной информации. Этап переработки информации перед анализом Big Data, который необходим для правильной подготовки данных к дальнейшему исследованию.
Одним из методов обработки информации является Data Mining, что в переводе означает «добычу данных». Название точно отражает суть метода, который заключается в извлечении полезных закономерностей из большого количества разнородных данных. При использовании Data Mining решаются различные задачи, такие как классификация, кластеризация, анализ отклонений и многие другие. В рамках классификации метод позволяет группировать данные по определенным признакам. Анализ отклонений позволяет выявить аномальные события в потоке информации. Data Mining - мощный инструмент, который помогает оптимизировать работу с данными и выявить скрытые закономерности в таких областях, как маркетинг, планирование, производство и др.
Алгоритмы машинного обучения похожи на работу человеческого мозга, ведь они производят анализ входных данных и дают необходимые результаты. Нейронные сети особенно умелы в этом, проделывая сложную работу. Они могут обнаруживать лица на фотографиях или определять недобросовестные транзакции по различным признакам.
Прогнозирование будущих событий – это важный инструмент в современном бизнесе. С помощью метода прогностического анализа можно предсказать множество различных вещей, таких как поведение клиентов, динамику продаж, финансовые показатели организации, курсы валют, сроки доставки товаров, а также ремонтопригодность оборудования и многое другое.
Основная суть метода заключается в использовании данных из прошлого для прогнозирования будущих событий. Аналитики выявляют параметры, которые в наибольшей степени влияют на результат, и на основе их анализа, делают предположения о том, что может произойти в будущем.
Прогностический анализ применяется в многих сферах бизнеса и стал незаменимым инструментом планирования и принятия решений. Правильно использованный метод позволяет предугадать различные риски и возможности, что создает преимущество в условиях жесткой конкуренции на рынке.
Статистический анализ
Большие объемы данных (Big Data) помогают улучшить точность статистического анализа: чем более представительной будет выборка, тем более точными будут результаты исследований.
Визуализация данных является неотъемлемой частью их анализа. Она позволяет превратить информацию в понятный и удобный для использования формат, включая графики, диаграммы, карты и гистограммы. Обычно этот этап анализа выполняется в конечной стадии, когда необходимо проиллюстрировать результаты для пользователей.
Для эффективной визуализации используются специальные инструменты Big Data, предназначенные для работы с каждым конкретным методом.
Рост объема информации, с которым мы сталкиваемся каждую секунду, стремительно ускоряется. Так, только за 2020 год пользователи сгенерировали более 60 зеттабайт (60 × 10 21 байт) данных. При этом, по прогнозам, к 2025 году подобный объем информации вырастет втрое. В связи с этим, анализ Big Data является одним из перспективных технологических направлений. Большие данные актуальны для бизнеса, науки и сферы государственного управления. Поэтому крупные компании активно инвестируют в эту область.
Какие свойства данных можно отнести к понятию Big Data?
Big Data - это громадный объем данных, который является характерным атрибутом технологической эры, что мы наблюдаем сегодня. Однако, объем данных - это не единственная характеристика, которой следует обладать, чтобы быть отнесенным к категории Big Data.
Для того, чтобы данные были считались Big Data, необходимо, чтобы они соответствовали трём главным характеристикам, называемым «трем V»: объёму, скорости и разнообразию. Количество данных должно быть огромным и измеряться не терабайтами, а петабайтами и эксабайтами. Данные также должны поступать из разных источников непрерывно и быстро. Информация, относящаяся к Big Data, может быть представлена разнообразными типами данных, такими как текстовые и графические документы, аудио и видеофайлы, а также логи. Некоторые эксперты добавляют два дополнительных критерия, которыми являются достоверность и ценность.
Также для того, чтобы данные имели значение и могли быть использованы бизнесом, они должны быть точными, практически полезными и иметь жизненную способность. В целом, характеристики Big Data существенно отличаются от привычных нам данных, традиционно обрабатываемых в информационных системах.
Одним из главных вопросов, который возникает при работе с большими данными, является то, какие преимущества они могут принести бизнесу. Анализ больших объемов информации может ускорять и улучшать различные процессы, а также помогать предсказывать тенденции рынка и поведение клиентов.
Одной из первых сфер, которые оценили все преимущества использования больших данных, стали телекоммуникационные компании, представители банковской отрасли и ретейла. Сегодня, однако, технологии компаний по работе с большими данными становятся все более востребованными во многих отраслях, включая безопасность, медицину, сельское хозяйство, промышленность энергетику, науку и государственное управление.
Конкретные примеры практического применения больших данных в разных областях также весьма показательны. В торговле, рекламе и индустрии развлечений большие данные используются, например, для минимизации рисков и улучшения качества товаров и услуг. В промышленности же данные помогают повышать экологическую и энергоэффективность.
Отрасль безопасности также не остается в стороне. Большие данные используются для анализа информации и поиска угроз в различных сферах, например, в банковской системе. Наука и медицина тоже вовлечены в работу с большими данными - они помогают специалистам лучше понимать клинические данные и улучшать научные исследования. В сельском хозяйстве данные используются для оптимизации урожаев и увеличения продуктивности, а в государственном управлении - для улучшения процессов принятия решений и работы органов власти.
Таким образом, использование больших данных может оказать значительное влияние на различные аспекты бизнеса и общественной жизни. Области применения их анализа все время расширяются, открывая новые возможности для увеличения прибыли и повышения удобства для покупателей и пользователей.
Революция в фармакологии: как Big Data помогает создавать лекарства
С использованием Big Data технологические компании могут создавать интеллектуальные продукты и сервисы, способные решать принципиально новые задачи. В США, например, была разработана платформа "вычислительной биологии", которая может помочь находить и создавать лекарственные препараты, способные точно попадать в цель и быть эффективными в лечении конкретных заболеваний.
Анализ больших данных уже используется для ускорения и повышения точности медицинских исследований. На конференции программистов DUMP были обнародованы данные о том, что использование Big Data в ходе цикличного медицинского тестирования выявило погрешность в 20% по сравнению с неавтоматизированными измерениями.
Анализ больших данных применяется и в Европе, где он внедряется в сферу медицины более активно. Исследования, проведенные в этой области, показали, что с помощью анализа информации на 150 000 пациентов можно выявлять связь определенных генетических факторов с заболеваемостью раком, что помогает более эффективно диагностировать и лечить заболевания.
Таким образом, внедрение инноваций в сферу медицины с помощью анализа больших данных позволяет создавать более эффективные лекарства и повышать точность медицинских исследований, что может привести к существенному улучшению качества жизни людей.
Маркетологи активно применяют большие данные в своей работе. Они анализируют информацию о покупках, поисковых запросах, посещениях и лайках в социальных сетях, чтобы определить предпочтения пользователей и предложить им наиболее интересные товары. С помощью Big Data реклама становится более целевой и эффективной.
Первопроходцем в области рекомендательных сервисов на основе анализа пользовательских данных является маркетплейс Amazon. В его системе используется не только информация об истории покупок и поведении клиентов, но и о внешних факторах, таких как время года или предстоящие праздники. Благодаря такому подходу система рекомендаций приносит более трети всех продаж.
Обеспечение безопасности транзакций - задача, которую банки решают с помощью больших данных. Они следят за мошенниками и предотвращают кражи персональных данных. Для этого используют анализ Big Data и машинное обучение, чтобы создавать модели поведения добросовестных пользователей.
Любое отклонение от этой нормы, сигнализирует о возможной опасности и вызывает немедленные меры безопасности.
Примером применения этой технологии может служить «Сбербанк», который еще в 2014 году внедрил систему сравнения фотографии клиента, полученной с помощью веб-камеры, с изображениями из базы. Этот метод идентификации оказался очень точным и помог сократить число случаев мошенничества в 10 раз.
В современном мире внедрение новых технологий является необходимым фактором для совершенствования производственных процессов. Одной из самых актуальных технологий на данный момент является Big Data, которая удается помочь предотвратить простои оборудования и снижение производительности. Интеллектуальные системы на основе этой технологии применяются для сбора и анализа данных с приборов мониторинга, средств измерения, логических контроллеров. Обработанные данные позволяют видеть, насколько работоспособно оборудование, предотвращать поломки, выявлять и исключать из процесса неэффективные операции, экономить материалы и потребляемую энергию, как это указано на сайте https://controleng.ru/.
Аэропорт «Пулково» в 2020 году внедрил интеллектуальную платформу по управлению предприятием, основанную на применении больших данных. Она стала ключевым элементом автоматизации работы семидесяти служб компании и позволила сделать управление аэропортом более прозрачным и эффективным. Особенностью платформы является возможность получения оперативной и полной информации по любому текущему процессу, что повышает качество работы предприятия. Плюсом является то, что внедрение платформы упрощает сотрудничество аэропорта с авиакомпаниями и оптимизирует планирование ресурсов, включая их техобслуживание и ремонт терминалов. Согласно прогнозам из АНО «Радиочастотный спектр», использование такого «умного сервиса» может улучшить техническое состояние оборудования и обеспечить оборачиваемость запасов на 10%, а уровень сервиса по поставкам — на 20%. Информация была размещена на сайте https://rspectr.com/.
Прогнозирование с помощью обработки больших объемов данных становится все более популярным. Основная идея заключается в создании моделей и прогнозировании будущих событий и поведения людей на их основе. Такой подход способен помочь в различных сферах, таких как планирование рекламных кампаний, определение спроса на услуги и товары, а также помогать взаимодействовать с клиентами.
Преимущество использования предсказательной аналитики на основе Big Data не ограничивается только сферой маркетинга и торговли. В сфере образования, например, она может помочь определить вероятность успеха учеников и эффективность программ.
Прогнозная аналитика уже нашла свое применение в авиации. Airbus планирует использовать предиктивное обслуживание к 2025 году для уменьшения случаев, когда некоторые самолеты не могут вылететь из-за выявленных неисправностей. Другая компания, Lufthansa Technik, уже внедрила платформу, которая прогнозирует сроки замены деталей.
Таким образом, использование прогнозной аналитики на основе больших объемов данных может иметь практическую пользу в различных отраслях, увеличивая эффективность процессов и помогая предсказать будущие события и тренды.
Немного статистики
Исследование, проведенное консалтинговой компанией Accenture в 2014 году, включало опрос руководителей тысячи компаний из различных стран мира. По результатам исследования 60% опрошенных компаний успешно внедрили системы анализа больших данных и были довольны их результатами. Создание новых продуктов и услуг, увеличение количества способов получения дохода, улучшение клиентского опыта и повышение лояльности клиентов были названы участниками опроса основными преимуществами технологии Big Data.
Фото: freepik.com