Молекулярная диагностика генетических заболеваний: особенности и методы исследования

Молекулярная диагностика генетических заболеваний: особенности и методы исследования

Генетический анализ крови – звучит дорого, сложно и долго. Но на самом деле, это уже стандартный метод диагностики в лабораториях. Генетические тесты теперь назначаются для оценки индивидуальной реакции на лекарства, для проверки наследственных заболеваний, установления родства и даже для профилактических целей.

С расшифровкой генома человека в ХХ веке, мы стали понимать, как наш личный “код” влияет на жизнь. Несмотря на споры в научной сфере, мы можем оценить полезность долгосрочных исследований: теперь доступна молекулярно-генетическая диагностика.

В данной статье мы расскажем, как проводится генетический анализ крови и для чего это нужно.

Молекулярно-генетическая диагностика – это относительно новый метод обследования организма, который позволяет определить различные вирусы и инфекции, а также точно выявить мутации генов, которые могут вызывать патологии и оценить риски возникновения различных наследственных и других заболеваний. Более того, это лишь часть возможностей, которые предоставляют возможность изучения ДНК.

Главным достоинством молекулярно-генетической диагностики является минимальный уровень медицинского вмешательства, поскольку проведение исследования проводится in vitro. Этот метод успешно применяется для диагностики заболеваний, переносимых эмбрионами, а также у основных и тяжело больных пациентов. Кровь из вены является самым распространенным материалом для исследования, но возможно выделение ДНК/РНК из других жидкостей и тканей: слюны, соскоба слизистой рта, выделений из половых органов, околоплодной жидкости, волос, ногтей и т.д.

Молекулярная диагностика является значительным шагом в направлении персонализированной медицины, которая позволяет учитывать все особенности конкретного пациента при обследовании и терапии.

Методы молекулярной диагностики находят широкое применение в различных областях медицины. Рассмотрим основные задачи и направления, где активно используется молекулярная диагностика.

Выявление патологий. Метод молекулярной диагностики используется в том числе в случаях, когда инфекционные или вирусные заболевания не могут быть определены с помощью обычных методов. Он позволяет обнаружить болезнь на ранней стадии еще до появления видимых симптомов.

Исследование аллергических реакций. Молекулярная диагностика применяется для определения аллергии: это более точный и безопасный метод для пациента, так как отсутствует прямой контакт с аллергеном.

Индивидуальная оценка рисков развития наследственных заболеваний. Метод молекулярной диагностики помогает выявить риск возникновения опасных патологий в будущем у взрослых и детей. Информация о моногенных болезнях позволяет оценить риски передачи наследственных заболеваний от родителей к ребенку, а знание о предрасположенности к мультифакторной патологии необходимо для профилактики болезней с помощью изменения образа жизни.

Перинатальная медицина. Метод молекулярной диагностики позволяет выявлять синдромы Дауна, Эдвардса, Патау, Тернера, Клайнфельтера еще до рождения ребенка. Также он помогает выявить генетические причины бесплодия и невынашивания беременности.

Фармакогенетика. Молекулярная диагностика позволяет объяснить, почему на некоторых людей действуют одни лекарства, а на других — иные. Это имеет особое значение для лечения тяжелых заболеваний, например, онкологических.

Спортивная медицина. Молекулярная диагностика помогает прогнозировать спортивные перспективы, учитывая генетические особенности каждого человека. Это полезно для того, чтобы выбрать для ребенка занятия, которые принесут ему наибольшую пользу для здоровья или позволят достичь спортивных результатов.

Многие медики видят в молекулярной диагностики возможность индивидуальной подборки препаратов для каждого пациента, учитывая его генетические особенности. Эта персонализированная терапия должна значительно уменьшить побочные эффекты лекарств и сделать лечение более эффективным.

Генетические исследования обычно проводятся, когда пациент стремится получить информацию о своем здоровье и состоянии организма. Приведем несколько конкретных ситуаций, в которых рекомендуется обращаться к генетическим исследованиям:

  • Для установления точного диагноза. Нередко бывает, что пациентам неправильно определяют аллергены или появляется задержка в диагностировании вирусных заболеваний, что может затруднить эффективное лечение. В таких случаях результаты генетического анализа могут быть полезны.
  • Для профилактики возможных патологий. Если человек знает о своем повышенном риске заболевания раком или сердечно-сосудистыми заболеваниями, то проведение генетических исследований может помочь ему предпринять соответствующие меры по профилактике таких заболеваний и отказаться от вредных привычек.
  • Для повышения эффективности лечения. Например, онкологические заболевания имеют множество вариантов терапии. Если правильно определить, какой из методов будет наиболее эффективным, можно сэкономить время, а иногда — и спасти жизнь пациента.

Кроме того, существует ряд генетических исследований, связанных с планированием и рождением ребенка. Чаще всего родители обращаются к этим исследованиям по следующим причинам:

  • Для изучения генетической совместимости родителей, оценки рисков возможных наследственных заболеваний у будущего ребенка.
  • Для обнаружения возможных патологий плода в ранних стадиях беременности.
  • Для диагностики возможных заболеваний и аллергических реакций ребенка после рождения.
  • Для определения того, какие виды спорта, питания и образа жизни наиболее подходят ребенку.
  • Для установления отцовства или материнства.

Статья "Этапы молекулярно-генетических исследований"

Если вы намерены провести молекулярно-генетическое исследование, то необходимо знать, что любой его метод включает в себя ряд этапов:

  1. Взятие биоматериала. Это может быть кровь пациента или другой материал. После того, как биоматериал получен, он маркируется и транспортируется в лабораторию.
  2. Выделение ДНК/РНК. Для проведения анализов требуется чистая ДНК или РНК. Существует несколько методов извлечения, которые позволяют получить эту материю надежно и без потерь.
  3. Проведение исследований по выбранному методу. После подготовки образцов с помощью ДНК или РНК происходит проведение молекулярно-генетических исследований. Конкретный метод изучения зависит от цели исследования.
  4. Изучение и интерпретация результатов. Полученные результаты нужно обработать и проанализировать. Для этого подойдет программное обеспечение для анализа данных. Номер индивидуального протокола лучше сохранять, чтобы в дальнейшем иметь возможность его прочитать.
  5. Выдача заключения. На последнем этапе исследования вы получите заключение, которое будет содержать описание метода, используемых реактивов, конечных результатов и других особенностей этого исследования.

Таким образом, любое молекулярно-генетическое исследование должно пройти эти этапы, чтобы быть завершенным.

Методы молекулярно-генетической диагностики – это совокупность лабораторных методов, основанных на анализе генетического материала (ДНК и РНК). Они позволяют определять наличие или отсутствие генетических изменений, а также выявлять наследственную предрасположенность к различным заболеваниям.

Одним из наиболее распространенных методов молекулярно-генетической диагностики является полимеразная цепная реакция (ПЦР). Этот метод позволяет увеличивать количество копий генетического материала для дальнейшего анализа. Также существуют методы, основанные на гибридизации (соединении генетических материалов по определенным закономерностям), например, гибридизационный анализ с использованием РНК-зонда.

Методы молекулярно-генетической диагностики широко применяются в медицине для диагностики наследственных заболеваний, а также в судебно-медицинской экспертизе для определения отцовства или материнства. Они позволяют получить точные и надежные результаты, а также ускорить процесс диагностики и лечения.

Методы молекулярной цитогенетики являются эффективным средством для выявления наследственных заболеваний, психических отклонений и врожденных пороков развития. Цитогенетический анализ проводится для изучения хромосом с помощью специальных микроматриц, нанесенных на ДНК-чипы. Для этого из образца крови выделяют лимфоциты, помещая их на 48-72 часа в питательную среду, после чего проводят их исследование. Обычно данный анализ назначается нечасто, главным образом для изучения причин бесплодия и невынашивания беременности, а также для уточнения диагноза у детей при подозрении на врожденные заболевания. Точность цитогенетического анализа очень высока, однако метод является трудоемким и длительным, так как результат можно получить только через 20-30 дней после сдачи исследуемого образца.

Одним из достоинств цитогенетического анализа является его специфичность, которая позволяет выявлять практически без погрешностей небольшое количество патологий, таких как, например, аутизм. Но в то же время данный метод имеет и недостатки, так как не способен выявить многие другие наследственные заболевания.

Метод полимеразной цепной реакции (ПЦР) был изобретен в 1983 году и по-прежнему является наиболее распространенным и фундаментальным способом в молекулярной диагностике. Он отличается высочайшей точностью, чувствительностью и скоростью проведения исследования. ДНК/РНК молекулярной диагностики методом ПЦР позволяет выявлять множество патологий, таких как ВИЧ, вирусные гепатиты, половые инфекции, туберкулез, боррелиоз, энцефалит и прочие.

Для проведения анализа выбирают участок ДНК и многократно увеличивают его количество в лаборатории с помощью специальных веществ. Большой перечень биоматериалов подходит для диагностики: кровь, слюна, моча, выделения из половых органов, плевральная и спинномозговая жидкость, ткани плаценты и т.д.

Флуоресцентная гибридизация (FISH) – это специфический молекулярный метод исследования, фокусирующийся на уникальных нуклеотидных соединениях отдельно взятой хромосомы или ее сегментах. Для этого используются меченые флуоресцентными маркерами короткие ДНК-последовательности, которые выступают в качестве зондов и позволяют обнаружить атипичные гены. Исследовать можно кровь, костный мозг, плаценту, ткани эмбриона, биопсии и другие биоматериалы. Однако, образец необходимо доставить в лабораторию как можно быстрее после его изъятия.

В основном FISH-метод используется в онкологии (например, для отслеживания остаточных злокачественных клеток после химиотерапии) а также в пренатальной диагностике (для выявления риска развития у плода врожденных пороков), гематологии. Метод FISH, с точностью около 0,5%, является чрезвычайно чувствительным в обнаружении поврежденных фрагментов ДНК. Результаты исследования получают в течение 72-х часов.

Стоит отметить, что FISH-метод, более специфичен, чем микроматричный цитогенетический анализ, и может использоваться только с целью подтверждения или опровержения предполагаемого диагноза.

Метод микрочипирования основан на использовании зондов, помеченных флуоресцентными последовательностями ДНК, которые извлекаются из биоматериала пациента. Эти зонды затем сравниваются с образцами, размещенными на микрочипе, который представляет собой стеклянную, пластиковую или гелевую базу, способную вместить тысячи микротестов, длиной от 25 до 1000 нуклеотидов. ДНК-микрочип может использоваться для анализа любого биоматериала, из которого можно извлечь образец ДНК/РНК.

Этот метод применяется в медицине, в том числе в онкологии и кардиологии для изучения генетической предрасположенности и оценки состояния организма. Он точен и чувствителен, результаты исследования готовы через 4–6 дней после забора материала.

Однако, в России микрочипирование применяют редко, что является его основным недостатком. В западных странах исследования ДНК/РНК уже распространены повсеместно, но в России эту услугу предлагают не все клиники.

Важно отметить, что молекулярная диагностика является неинвазивным и точным методом обследования организма, который нашел применение в разных областях медицины. Однако, информация, связанная со здоровьем и медициной, представлена только для ознакомительных целей и не должна стать поводом для самодиагностики или самолечения.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *